Michael Poller

Student: Michael Poller

Educators: Marjan Colletti / Marc Ihle / Luca Melchiori | Tutors: Christian Bührer / David Christian / Jan Contala / Philipp Schwaderer / Dominik Schöch / Felix Steinbacher

Institute for experimental architecture and building construction of the University of Innsbruck | © Universität Innsbruck


Reinterpreted Digital Ecologies – A Series of Images:

11_Poller_Michael_T2_IMGI11_1240px
Student: Michael Poller
23_Poller_Michael_T2_IMG23_1240px
Student: Michael Poller
24_Poller_Michael_T2_IMG24_1240px
Student: Michael Poller
25_Poller_Michael_T2_IMG25_1240px
Student: Michael Poller
26_Poller_Michael_T2_IMG26_1240px
Student: Michael Poller
27_Poller_Michael_T2_IMG27_1240px
Student: Michael Poller
28_Poller_Michael_T2_IMG28_1240px
Student: Michael Poller
29_Poller_Michael_T2_IMG29_1240px
Student: Michael Poller

Poller_Michael_T1_IMG9I_1240pxw
Student: Michael Poller

 

Poller_Michael_T1_IMG13I_1240px
Student: Michael Poller
Poller_Michael_T1_IMG14I_1240px
Student: Michael Poller

references & sources:
Abb.1: “South Greendland,http://www.fourth-millennium.net/greenland/south-greenland-july-2002.JPG
Abb.2: “The Sahara Desert”,https://i.kinja-img.com/gawker-media/image/upload/t_original/jab4kgrohlqxptrbvb4b.jpg
Abb.3: “Hurrican”, https://fortunedotcom.files.wordpress.com/2017/09/rtx3f6kx.jpg


Katarina Susanne Ingrid Rödl

Student: Katarina Susanne Ingrid Rödl

Educators: Marjan Colletti / Marc Ihle / Luca Melchiori | Tutors: Christian Bührer / David Christian / Jan Contala / Philipp Schwaderer / Dominik Schöch / Felix Steinbacher

Institute for experimental architecture and building construction of the University of Innsbruck | © Universität Innsbruck


Reinterpreted Digital Ecologies – A Series of Images:

Rödl_Katarina_T2_IMG22I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T2_IMG23I_1240px
Student: Katarina Susanne Ingrid Rödl

 


Rödl_Katarina_T1_IMG12I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG13I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG14I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG15I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG16I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG17I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG18I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG19I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG20I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG21I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG4I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG11I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG10I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG9I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG8I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG7I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG6I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG5I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG3Q_750px
Enter a caption

Student: Katarina Susanne Ingrid Rödl

Rödl_Katarina_T1_IMG3I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG2I_1240px
Student: Katarina Susanne Ingrid Rödl
Rödl_Katarina_T1_IMG1I_1240px
Student: Katarina Susanne Ingrid Rödl

Das erste Bild zeigt einen Gletschersee in Relation zum Festland. Hier fand ich es interessant, wie sich der See auf seine eigene Art und Weise einen Zugang zum Land verschafft hat. Durch die einzelnen „Äste“ und die sich daraus entstehenden Verzweigungen wird der Kräfteverlauf deutlich gemacht.
Auf dieses Bild habe ich zunächst in Photoshop einige Filter gelegt, um den Kraftfluss hervorzuheben. Danach habe ich dieses Vorgehen in Grasshopper und dem Farbfilter wiederholt. Hinzu kamen die Höhenverläufe.
Als zweites Bild habe ich mir eine Nahaufnahme eines Hurrikanes ausgesucht. Bei einem starken Sturm der auf ein Land trifft, werden enorm hohe Kräfte in verschiedene Richtungen hervorgerufen. Diese habe ich mit Grasshopper interpretiert.
Bei meinem dritten Bild habe ich mir überlegt was mir bei meinen Bildern noch fehlt. Wasser, Land und Sturm sind mit den vorherigen Bildern bereits abgedeckt. Um etwas Höhe in ein Bild zu bekommen, dachte ich mir, dass Berge sinnvoll wären. Somit habe ich mich für eine Kombination aus Wasser Land und Bergen entschieden. Den Kraft-, und Höhenverlauf habe ich mit Grasshopper interpretiert.
Die miteinander kombinierten Bilder zeigen einen Hurrikan der kurz vor dem Auftreffen auf ein Land ist. Das Land ist zunächst flach und verläuft im Hintergrund zu einer bergigen Landschaft. Für die Interpretation habe ich zunächst Photoshop verwendet und diese Bilder ins Grasshopper geladen um diese mittels Rechtecken (welche in Größe und Breite variieren) und verschiedenen Höheneinstellungen, Skalierungen und Drehungen, zu interpretieren. Strömung, dichteres und höheres Gelände werden verschieden dargestellt und setzen sich voneinander ab. Auch habe ich versucht 3 Bilder miteinander zu kombinieren. Jedes Bild übernahm hier eine eigene Aufgabe.


referecnces & sources:
Abb. 001: “Earth from google earth”, https://i.imgur.com/cO6CzHM.jpg, 20.10.2017
Abb. 002: “Wettergefahrenfrühwarnung”, http://www.wettergefahren-fruehwarnung.de/Karten2016b/20161214sat10.jpg, 20.10.2017
Abb. 003: “NASA”, https://eol.jsc.nasa.gov/DatabaseImages/EFS/highres/ISS043/ISS043-E-93251.JPG, 2017

Kilian Rothmayr

Student: Kilian Rothmayr

Educators: Marjan Colletti / Marc Ihle / Luca Melchiori | Tutors: Christian Bührer / David Christian / Jan Contala / Philipp Schwaderer / Dominik Schöch / Felix Steinbacher

Institute for experimental architecture and building construction of the University of Innsbruck | © Universität Innsbruck


Reinterpreted Digital Ecologies – A Series of Images:

Rothmayr_Kilian_T2_IMG6I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T2_IMG2I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T2_IMG5I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T2_IMG4I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T2_IMG3I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T2_IMG1I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T2_IMG7I_1240px
Student: Kilian Rothmayr

 


Rothmayr_Kilian_T1_IMG2I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG3I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG4I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG5I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG6I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG7I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG8I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG9I_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG2Q_1240px
Student: Kilian Rothmayr
Rothmayr_Kilian_T1_IMG1I_1240px
Student: Kilian Rothmayr

 


Die Quellbilder zeigen alle verschiedenen Luftaufnahmen von arktischen Landschaften. Es ist ein Flussdelta im Sarek Nationalpark in Nordschweden zu sehen. Abbildung von im arktischen Polarmeer treibenden Eisschollen; Zeigt wie das Plankton an der norwegisch-schwedischen Küste ankommt außerdem sind die Luftströmungen und die vorherrschende Wetterlage zu sehen.


Landschaftsbild entstanden durch das übereinanderlegen und neu interpretiert der Grenzen der jeweiligen Bilder. Zeigt wie ein Fluss ins Meer strömt und das Eis in entgegengesetzte Richtung landeinwärts gedrückt wird.
Soll die Konturen und die Unterschiede im Höhenprofil verdeutlichen und damit die Boundaries der Landschaft zeigen. Außerdem werden die verschiedenen Strömungen innerhalb des Bildes durch die Farbgebung deutlich.
Zeigen wie sich die Eisschollen in ihrem Strom entlang der Grenze der Landmasse landeinwärts bewegen.
Die gewaltige Landmasse und ihre Abgrenzung zum Meer hin wird verdeutlicht außerdem ist wieder die einzigartige Oberflächenstruktur des Landes zu erkennen.
Die Abstrahierung soll die Oberflächenstruktur der Landmasse mit ihren charakteristischen Rissen verdeutlichen. Dies wird durch die Reduzierung der Pixel auf Quadrate die jeweils abhängig von ihrer Farbsättigung extrudiert werden erzielt.
Zeigt die Abgrenzung des Flussverlaufs als Negativ Bild mit extrudierten Kanten.


references & sources:
Abb.1: ESA, “Earth from Space: Plankton arrives in Skandinavia” http://www.esa.int/Our_Activities/Observing_the_Earth/Earth_from_Space_Plankton_arrives_in_Scandinavia (20.10.2017)
Abb.2: Google Earth, “Sarek Nationalpark” (21.10.2017)
Abb.2: NASA, “Larger chunks of sea ice”, https://blogs.nasa.gov/icebridge/2014/09/24/picturing-sea-ice-with-arises-digital-camera-instrument/ (18.10.2017)

Alexander Thomas Schidlbauer

Student: Alexander Thomas Schidlbauer

Educators: Marjan Colletti / Marc Ihle / Luca Melchiori | Tutors: Christian Bührer / David Christian / Jan Contala / Philipp Schwaderer / Dominik Schöch / Felix Steinbacher

Institute for experimental architecture and building construction of the University of Innsbruck | © Universität Innsbruck


Reinterpreted Digital Ecologies – A Series of Images:

schidlbauer_alexander_T2_IMG1_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG2_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG3_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG4_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG5_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG6_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG7_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG8_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG9_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG10_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T2_IMG11_1240px
Student: Alexander Thomas Schidlbauer

schidlbauer_alexander_T1_IMG2I_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG3_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG3I_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG4_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG5_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG6_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG7_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG8_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG9a_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG9b_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG1_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG1Q_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG2b_1240px
Student: Alexander Thomas Schidlbauer
schidlbauer_alexander_T1_IMG3Q_1240px
Student: Alexander Thomas Schidlbauer

references & resources:
https://www.google.com/intl/de/earth/
https://earthobservatory.nasa.gov/IOTD/view.php?id=89806

Peter Tripp

Student: Peter Tripp

Educators: Marjan Colletti / Marc Ihle / Luca Melchiori | Tutors: Christian Bührer / David Christian / Jan Contala / Philipp Schwaderer / Dominik Schöch / Felix Steinbacher

Institute for experimental architecture and building construction of the University of Innsbruck | © Universität Innsbruck


Reinterpreted Digital Ecologies – A Series of Images:

TRRIPP_PETER_T2_IMG1I-1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG3I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG4I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG5I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG7I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG8I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG9I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG10I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG11I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG12I_1240px
Student: Peter Tripp
TRRIPP_PETER_T2_IMG13I_1240px
Student: Peter Tripp

TRIPP_PETER_T1_IMG1I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG1Q_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG2I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG3I
Student: Peter Tripp
TRIPP_PETER_T1_IMG3I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG4I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG5I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG6I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG7I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG8I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG9I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG10I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG11I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG12I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG13I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG14I_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG2Q_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG3Q_1240px
Student: Peter Tripp
TRIPP_PETER_T1_IMG15I_1240px
Student: Peter Tripp

Although it may appear as a watercolour painting, this image is a natural-colour capture of a plankton bloom in the Barents Sea by the Sentinel-2A satellite.
Plankton, the most abundant type of life found in the ocean, are microscopic marine plants that drift on or near the surface of the sea. They are sometimes referred to as ‘the grass of the sea’ because they are the basic food on which all other marine life depends.
Since plankton contain photosynthetic chlorophyll pigments, these simple organisms play a similar role to terrestrial ‘green’ plants in the photosynthetic process. Plankton are able to convert inorganic compounds such as water, nitrogen and carbon into complex organic materials.
With their ability to ‘digest’ these compounds, they are credited with removing as much carbon dioxide from the atmosphere as their counterparts on land. As a result, the oceans have a profound influence on climate. Since plankton are a major influence on the amount of carbon in the atmosphere and are sensitive to environmental changes, it is important to monitor and model them into calculations of future climate change.
Although some types of plankton are individually microscopic, the chlorophyll they use for photosynthesis collectively tints the colour of the surrounding ocean waters, providing a means of detecting these tiny organisms from space with dedicated sensors, such as Sentinel-2’s multispectral imager with 13 spectral bands.
Some algae species are toxic or harmful. If they surge out of control during optimal blooming conditions they can exhaust the water of oxygen and suffocate larger fish. This phenomenon has dramatically increased in recent decades, and is particularly dangerous to fish farms because the fish cannot flee affected areas. Early warning of harmful blooms from satellites can help to prevent fish farmers from losing their stock, as it happened in Chile recently.

Underwater structures of the Great Bahamas Bank are pictured in this image from the Landsat-8 satellite on 5 February.
Sitting north of Cuba, the bank is made of limestone – mainly from the skeletal fragments of marine organisms – that has been accumulating for over 100 million years.
Currents sculpted these underwater sediments into the wavy pattern we see along the bottom of the image, just a few metres deep.
We can clearly see where the shallow waters drop off into the deep, dark water of an area known as the Tongue of the Ocean. With depths of up to about 4000 m, this trench surrounded by islands, reefs and shoals has an opening to the Atlantic Ocean at its northern end (not pictured).
The trench was carved during the last Ice Age when the land was still above sea level and exposed to erosion from draining rainwater. As the Ice Age ended and the massive ice sheets across the globe melted, global sea levels rose and flooded the canyon.
Over the deep Tongue we can see a few sparse clouds.

This false-colour Envisat image highlights a unique cloud formation, created by ‘Von Karman vortices’, south of the Canary Island archipelago, some 95 km from the northwest coast of Africa (right) in the Atlantic Ocean.
Von Karman vortices, named after aeronautical engineer Theodore von Karman, form as air flows around an object in its path, causing it to separate and create eddies in its wake.
The clockwise and counterclockwise spirals in this image were created as wind blowing from the north over the Atlantic was disturbed by the archipelago.
Seven larger islands and a few smaller ones make up the Canaries; the larger islands are (left to right): El Hierro, La Palma, La Gomera, Tenerife, Gran Canaria, Fuerteventura and Lanzarote.
Tenerife is the largest of the Canaries, while Gran Canaria is the most populated. UNESCO declared La Palma a Biosphere Reserve in 1983.
This image was acquired by Envisat’s Medium Resolution Imaging Spectrometer on 6 June 2010 at a resolution of 300 m.


references & sources:
“ESA” , http://www.esa.int/Our_Activities/Observing_the_Earth
Abb1 : “Barents bloom” , http://www.esa.int/spaceinimages/Images/2016/08/Barents_bloom , 23.10.2017
Abb2 : “Great Bahamas Bank” , http://www.esa.int/spaceinimages/Images/2014/12/Great_Bahamas_Bank , 23.10.2017
Abb3 : “Swirling cloud art in the Atlantic Ocean” , http://www.esa.int/spaceinimages/Images/2010/06/Swirling_cloud_art_in_the_Atlantic_Ocean , 23.10.2017